
Motion Models (cont)

3/14/20181

Computing the Density

3/14/20182

 to compute

prob 𝑣𝑣 − �𝑣𝑣,𝛼𝛼1𝑣𝑣2 + 𝛼𝛼2𝜔𝜔2 ,
prob 𝜔𝜔 − �𝜔𝜔,𝛼𝛼3𝑣𝑣2 + 𝛼𝛼4𝜔𝜔2 , and
prob �𝛾𝛾,𝛼𝛼5𝑣𝑣2 + 𝛼𝛼6𝜔𝜔2

use the appropriate probability density function; i.e., for zero-
mean Gaussian noise:

prob 𝑎𝑎, 𝑏𝑏2 = 1
2𝜋𝜋𝑏𝑏2

𝑒𝑒−
1
2
𝑎𝑎2

𝑏𝑏2

Sampling from the Velocity Motion Model

3/14/20183

 suppose that a robot has a map of its environment and it
needs to find its pose in the environment
 this is the robot localization problem
 several variants of the problem

 the robot knows where it is initially
 the robot does not know where it is initially
 kidnapped robot: at any time, the robot can be teleported to another

location in the environment

 a popular solution to the localization problem is the particle
filter
 uses simulation to sample the state density),|(1−ttt xuxp

Sampling from the Velocity Motion Model

3/14/20184

 sampling the conditional density is easier than computing the
density because we only require the forward kinematics
model
 given the control ut and the previous pose xt-1 find the new pose xt

Sampling from the Velocity Motion Model

3/14/20185










c

c

y
x
















=−

θ
y
x

xt 1

?=
















′
′
′

=
θ
y
x

xt

t∆ω
v

ω
vr =

θ
ω

θ
ω

cos

sin

vyy

vxx

c

c

+=

−=

Eqs 5.7, 5.8

Sampling from the Velocity Motion Model

3/14/20186

















∆
∆+−
∆++−

+















=

















∆+
∆+−
∆++

=
















′
′
′

t
t
t

y
x

t
ty
tx

y
x

vv

vv

v
c

v
c

ω
ωθθ
ωθθ

θ

ωθ
ωθ
ωθ

θ

ωω

ωω

ω

ω

)cos(cos
)sin(sin

)cos(
)sin(

Eqs 5.9

*we already derived this for the differential drive!

Sampling from the Velocity Motion Model

3/14/20187

 as with the original motion model, we will assume that given
noisy velocities the robot can also make a small rotation in
place to determine the final orientation of the robot

















∆+∆
∆+−
∆++−

+















=

















′
′
′

tt
t
t

y
x

y
x

vv

vv

γω
ωθθ
ωθθ

θθ
ωω

ωω

ˆˆ
)ˆcos(cos
)ˆsin(sin

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

Sampling from the Velocity Motion Model

3/14/20188

Sampling from the Velocity Motion Model

3/14/20189

 the function sample(b2) generates a random sample from a
zero-mean distribution with variance b2

 Matlab is able to generate random numbers from many
different distributions

 help randn
 help stats

10

How to Sample from Normal or
Triangular Distributions?

 Sampling from a normal distribution

 Sampling from a triangular distribution

1. Algorithm sample_normal_distribution(b):

2. return

1. Algorithm sample_triangular_distribution(b):

2. return

11

Normally Distributed Samples

106 samples

12

For Triangular Distribution

103 samples 104 samples

106 samples105 samples

13

Rejection Sampling

 Sampling from arbitrary distributions

1. Algorithm sample_distribution(f,b):

2. repeat

3.

4.

5. until ()

6. return

Examples

3/14/201814

Odometry Motion Model

3/14/201815

 many robots make use of odometry rather than velocity
 odometry uses a sensor or sensors to measure motion to

estimate changes in position over time
 typically more accurate than velocity motion model, but

measurements are available only after the motion has been
completed

 technically a measurement rather than a control
 but usually treated as control to simplify the modeling

 odometry allows a robot to estimate its pose
 but no fixed mapping from odometer coordinates and world

coordinates

 in wheeled robots the sensor is often a rotary encoder

16

Example Wheel Encoders
These modules require +5V
and GND to power them, and
provide a 0 to 5V output. They
provide +5V output when they
"see" white, and a 0V output
when they "see" black.

These disks are manufactured out
of high quality laminated color
plastic to offer a very crisp black
to white transition. This enables a
wheel encoder sensor to easily
see the transitions.

Source: http://www.active-robots.com/

Odometry Model

 when using odometry, the robot keeps an internal estimate of
its pose at all time
 for example, consider a robot moving from pose 𝑥̅𝑥𝑡𝑡−1 to 𝑥̅𝑥𝑡𝑡
















=−

θ
y
x

xt 1
















=

'
'
'

θ
y
x

xt

Note: bar indicates values in the robot's internal coordinate system

Odometry Model

 the internal pose estimates 𝑥̅𝑥𝑡𝑡−1 to 𝑥̅𝑥𝑡𝑡 are treated as the
control inputs to the robot:
















=−

θ
y
x

xt 1
















=

'
'
'

θ
y
x

xt

Note: bar indicates values in the robot's internal coordinate system









= −

t

t
t x

x
u 1

Odometry Model

 we require a model of how the robot moves from 𝑥̅𝑥𝑡𝑡−1 to 𝑥̅𝑥𝑡𝑡
 there are an infinite number of possible motions between 𝑥̅𝑥𝑡𝑡−1 to 𝑥̅𝑥𝑡𝑡
















=−

θ
y
x

xt 1
















=

'
'
'

θ
y
x

xt

Note: bar indicates values in the robot's internal coordinate system

Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
















=−

θ
y
x

xt 1
















=

'
'
'

θ
y
x

xt

Note: bar indicates values in the robot's internal coordinate system

1rotδ

Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2. move in a straight line by 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
















=−

θ
y
x

xt 1
















=

'
'
'

θ
y
x

xt

Note: bar indicates values in the robot's internal coordinate system

1rotδ transδ

Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2. move in a straight line by 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
3. rotate in place by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟2
















=−

θ
y
x

xt 1
















=

'
'
'

θ
y
x

xt

Note: bar indicates values in the robot's internal coordinate system

1rotδ transδ

2rotδ

Odometry Model
















=−

θ
y
x

xt 1
















=

'
'
'

θ
y
x

xt

Note: bar indicates values in the robot's internal coordinate system

1rotδ transδ

2rotδ

22)'()'(yyxxtrans −+−=δ

θδ −−−=)','(atan21 xxyyrot

12 ' rotrot δθθδ −−=

Noise Model for Odometry

 the difference between the true motion of the robot and the
odometry motion is assumed to be a zero-mean random
value

2
2

2
11

11
ˆ

transrot
rotrot δαδα

εδδ
+

=−

2
2

2
21

22
ˆ

transrot
rotrot δαδα

εδδ
+

=−
)(2

2
2

14
2

3

ˆ
rotrottrans

transtrans δδαδα
εδδ

++
=−

Sampling from the Odometry Motion Model

3/14/201825

 suppose you are given the previous pose of the robot in world
coordinates (𝑥𝑥𝑡𝑡−1) and the most recent odometry from the
robot (𝑢𝑢𝑡𝑡)

 how do you generate a random sample of the current pose of
the robot in world coordinates (𝑥𝑥𝑡𝑡)?
1. use odometry to compute motion parameters 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2. use noise model to generate random true motion parameters

𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝛿̂𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
3. use random true motion parameters to compute a random 𝑥𝑥𝑡𝑡

Sample Odometry Motion Model
1. Algorithm sample_motion_model(𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1):

2.

3.

4.

5.

6.

7.

8. 𝑥𝑥′ = 𝑥𝑥 + 𝛿̂𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 cos 𝜃𝜃 + 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟

9. 𝑦𝑦′ = 𝑦𝑦 + 𝛿̂𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 sin 𝜃𝜃 + 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
10. 𝜃𝜃′ = 𝜃𝜃 + 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟2
11. return 𝑥𝑥𝑥 𝑦𝑦𝑦 𝜃𝜃′ 𝑇𝑇

θδ −−−=)','(atan21 xxyyrot
22)'()'(yyxxtrans −+−=δ

12 ' rotrot δθθδ −−=

)(ˆ 2
2

2
1111 transrotrotrot sample δαδαδδ +−=

)(ˆ 2
2

2
2122 transrotrotrot sample δαδαδδ +−=

))((ˆ 2
2

2
14

2
3 rotrottranstranstrans sample δδαδαδδ ++−=

3/14/201827

Sampling from Our Motion Model

Start

Odometry Motion Model

3/14/201829

 the key to computing for the odometry
motion model is to remember that the robot has an internal
estimate of its pose

),|(1−ttt xuxp

θ

'θ














=−

θ
y
x

xt 1 














=

'
'
'

θ
y
x

xt

robot’s internal poses

Odometry Motion Model

3/14/201830

 the key to computing for the odometry
motion model is to remember that the robot has an internal
estimate of its pose

),|(1−ttt xuxp

θ

θ ′
















=−

θ
y
x

xt 1

















′
′
′

=
θ
y
x

xt

given poses

Odometry Motion Model

3/14/201831

 the key to computing for the odometry
motion model is to remember that the robot has an internal
estimate of its pose

),|(1−ttt xuxp

θ

'θ














=−

θ
y
x

xt 1 














=

'
'
'

θ
y
x

xt

robot’s internal poses

Odometry Motion Model

3/14/201832

 the control vector is made up of the robot odometry

 use the robot’s internal pose estimates to compute the δ

22)'()'(yyxxtrans −+−=δ

θδ −−−=)','(atan21 xxyyrot

12 ' rotrot δθθδ −−=









= −

t

t
t x

x
u 1

Odometry Motion Model

3/14/201833

 use the given poses to compute the δ

 as with the velocity motion model, we have to solve the
inverse kinematics problem here
 but the problem is much simpler than in the velocity motion model

22)'()'(ˆ yyxxtrans −+−=δ

θδ −−−=)','(atan2ˆ
1 xxyyrot

12
ˆ'ˆ
rotrot δθθδ −−=

Odometry Motion Model

3/14/201834

 recall the noise model

which makes it easy to compute the probability densities of
observing the differences in the δ

2
2

2
11

ˆˆ11
ˆ

transrot
rotrot δαδα

εδδ
+

=−

2
2

2
21

ˆˆ22
ˆ

transrot
rotrot δαδα

εδδ
+

=−

)ˆˆ(ˆ 2
2

2
14

2
3

ˆ
rotrottrans

transtrans δδαδα
εδδ

++
=−

))ˆˆ(ˆ,ˆ(prob 2
2

2
14

2
31 rotrottranstranstransp δδαδαδδ ++−=

)ˆˆ,ˆ(prob 2
2

2
11112 transrotrotrotp δαδαδδ +−=

)ˆˆ,ˆ(prob 2
2

2
21223 transrotrotrotp δαδαδδ +−=

35

Odometry Motion Model

22)'()'(yyxxtrans −+−=δ
θδ −−−=)','(atan21 xxyyrot

12 ' rotrot δθθδ −−=
22)'()'(ˆ yyxxtrans −+−=δ
θδ −−−=)','(atan2ˆ

1 xxyyrot

12
ˆ'ˆ
rotrot δθθδ −−=

)ˆˆ,ˆ(prob 2
trans2

2
rot111rot1rot1 δαδαδδ +−=p

))ˆˆ(ˆ,ˆ(prob 2
rot2

2
rot14

2
trans3transtrans2 δδαδαδδ ++−=p

)ˆˆ,ˆ(prob 2
trans2

2
rot212rot2rot3 δαδαδδ +−=p

1. Algorithm motion_model_odometry(x,x’,u)

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. return p1 · p2 · p3

odometry values (u)

values of interest (x,x’)

3/14/201836

Recap

3/14/201837

 velocity motion model
 control variables were linear velocity, angular velocity about ICC,

and final angular velocity about robot center










c

c

y
x
















=−

θ
y
x

xt 1

















′
′
′

=
θ
y
x

xt

ω

v
γ

Recap

3/14/201838

 odometric motion model
 control variables were derived from odometry

 initial rotation, translation, final rotation

transδ
1rotδ

2rotδ















=−

θ
y
x

xt 1

















′
′
′

=
θ
y
x

xt

Recap

3/14/201839

 for both models we assumed the control inputs ut were noisy
 the noise models were assumed to be zero-mean additive

with a specified variance









+







=









noise

noise

ˆ
ˆ

ωωω
vvv

actual
velocity

commanded
velocity

noise

2
4

2
3noise

2
2

2
1noise

)var(
)var(

ωααω

ωαα

+=

+=

v
vv

Recap

3/14/201840

 for both models we assumed the control inputs ut were noisy
 the noise models were assumed to be zero-mean additive

with a specified variance

actual
motion

commanded
motion

noise
















+















=

















noiserot

noiserot

noisetrans

rot

rot

trans

rot

rot

trans

,2

,1

,

2

1

2

1

ˆ
ˆ
ˆ

δ
δ
δ

δ
δ
δ

δ
δ
δ

2
2

2
21,2

2
2

2
11,1

2
2

2
14

2
3,

ˆˆ)var(

ˆˆ)var(

)ˆˆ(ˆ)var(

transrotnoiserot

transrotnoiserot

rotrottransnoisetrans

δαδαδ

δαδαδ

δδαδαδ

+=

+=

++=

Recap

3/14/201841

 for both models we studied how to derive
 given

 xt-1 current pose
 ut control input
 xt new pose

find the probability density that the new pose is generated by the
current pose and control input

 required inverting the motion model to compare the actual
with the commanded control parameters

),|(1−ttt xuxp

Recap

3/14/201842

 for both models we studied how to sample from
 given

 xt-1 current pose
 ut control input

generate a random new pose xt consistent with the motion model

 sampling from is often easier than calculating
directly because only the forward kinematics

are required

),|(1−ttt xuxp

),|(1−ttt xuxp
),|(1−ttt xuxp

	Motion Models (cont)
	Computing the Density
	Sampling from the Velocity Motion Model
	Sampling from the Velocity Motion Model
	Sampling from the Velocity Motion Model
	Sampling from the Velocity Motion Model
	Sampling from the Velocity Motion Model
	Sampling from the Velocity Motion Model
	Sampling from the Velocity Motion Model
	How to Sample from Normal or Triangular Distributions?
	Normally Distributed Samples
	For Triangular Distribution
	Rejection Sampling
	Examples
	Odometry Motion Model
	Example Wheel Encoders
	Odometry Model
	Odometry Model
	Odometry Model
	Odometry Model
	Odometry Model
	Odometry Model
	Odometry Model
	Noise Model for Odometry
	Sampling from the Odometry Motion Model
	Sample Odometry Motion Model
	Slide Number 27
	Sampling from Our Motion Model
	Odometry Motion Model
	Odometry Motion Model
	Odometry Motion Model
	Odometry Motion Model
	Odometry Motion Model
	Odometry Motion Model
	Odometry Motion Model
	Slide Number 36
	Recap
	Recap
	Recap
	Recap
	Recap
	Recap

