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Computing the Density
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 to compute

prob 𝑣𝑣 − �𝑣𝑣,𝛼𝛼1𝑣𝑣2 + 𝛼𝛼2𝜔𝜔2 , 
prob 𝜔𝜔 − �𝜔𝜔,𝛼𝛼3𝑣𝑣2 + 𝛼𝛼4𝜔𝜔2 , and
prob �𝛾𝛾,𝛼𝛼5𝑣𝑣2 + 𝛼𝛼6𝜔𝜔2

use the appropriate probability density function; i.e., for zero-
mean Gaussian noise:

prob 𝑎𝑎, 𝑏𝑏2 = 1
2𝜋𝜋𝑏𝑏2

𝑒𝑒−
1
2
𝑎𝑎2

𝑏𝑏2



Sampling from the Velocity Motion Model
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 suppose that a robot has a map of its environment and it 
needs to find its pose in the environment
 this is the robot localization problem
 several variants of the problem

 the robot knows where it is initially
 the robot does not know where it is initially
 kidnapped robot: at any time, the robot can be teleported to another 

location in the environment

 a popular solution to the localization problem is the particle 
filter
 uses simulation to sample the state density ),|( 1−ttt xuxp



Sampling from the Velocity Motion Model
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 sampling the conditional density is easier than computing the 
density because we only require the forward kinematics 
model
 given the control ut and the previous pose xt-1 find the new pose xt



Sampling from the Velocity Motion Model
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Sampling from the Velocity Motion Model
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Eqs 5.9

*we already derived this for the differential drive!



Sampling from the Velocity Motion Model
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 as with the original motion model, we will assume that given 
noisy velocities the robot can also make a small rotation in 
place to determine the final orientation of the robot
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Sampling from the Velocity Motion Model
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Sampling from the Velocity Motion Model
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 the function sample(b2) generates a random sample from a 
zero-mean distribution with variance b2

 Matlab is able to generate random numbers from many 
different distributions

 help randn
 help stats
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How to Sample from Normal or 
Triangular Distributions?

 Sampling from a normal distribution

 Sampling from a triangular distribution

1. Algorithm sample_normal_distribution(b):

2. return  

1. Algorithm sample_triangular_distribution(b):

2. return  
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Normally Distributed Samples

106 samples
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For Triangular Distribution

103 samples 104 samples

106 samples105 samples
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Rejection Sampling

 Sampling from arbitrary distributions

1. Algorithm sample_distribution(f,b): 

2. repeat

3.

4.

5. until  (                )

6. return
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Odometry Motion Model
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 many robots make use of odometry rather than velocity
 odometry uses a sensor or sensors to measure motion to 

estimate changes in position over time
 typically more accurate than velocity motion model, but 

measurements are available only after the motion has been 
completed

 technically a measurement rather than a control
 but usually treated as control to simplify the modeling

 odometry allows a robot to estimate its pose
 but no fixed mapping from odometer coordinates and world 

coordinates

 in wheeled robots the sensor is often a rotary encoder
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Example Wheel Encoders
These modules require +5V 
and GND to power them, and 
provide a 0 to 5V output. They 
provide +5V output when they 
"see" white, and a 0V output 
when they "see" black. 

These disks are manufactured out 
of high quality laminated color 
plastic to offer a very crisp black 
to white transition. This enables a 
wheel encoder sensor to easily 
see the transitions. 

Source: http://www.active-robots.com/



Odometry Model

 when using odometry, the robot keeps an internal estimate of 
its pose at all time
 for example, consider a robot moving from pose 𝑥̅𝑥𝑡𝑡−1 to 𝑥̅𝑥𝑡𝑡
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Odometry Model

 the internal pose estimates 𝑥̅𝑥𝑡𝑡−1 to 𝑥̅𝑥𝑡𝑡 are treated as the 
control inputs to the robot:
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Odometry Model

 we require a model of how the robot moves from 𝑥̅𝑥𝑡𝑡−1 to 𝑥̅𝑥𝑡𝑡
 there are an infinite number of possible motions between 𝑥̅𝑥𝑡𝑡−1 to 𝑥̅𝑥𝑡𝑡
















=−

θ
y
x

xt 1
















=

'
'
'

θ
y
x

xt

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
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Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2. move in a straight line by 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2. move in a straight line by 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
3. rotate in place by 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟2
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Odometry Model
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22 )'()'( yyxxtrans −+−=δ

θδ −−−= )','(atan21 xxyyrot

12 ' rotrot δθθδ −−=



Noise Model for Odometry

 the difference between the true motion of the robot and the 
odometry motion is assumed to be a zero-mean random 
value
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Sampling from the Odometry Motion Model
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 suppose you are given the previous pose of the robot in world 
coordinates (𝑥𝑥𝑡𝑡−1) and the most recent odometry from the 
robot (𝑢𝑢𝑡𝑡)

 how do you generate a random sample of the current pose of 
the robot in world coordinates (𝑥𝑥𝑡𝑡)?
1. use odometry to compute motion parameters 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2. use noise model to generate random true motion parameters 

𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝛿̂𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
3. use random true motion parameters to compute a random 𝑥𝑥𝑡𝑡



Sample Odometry Motion Model
1. Algorithm sample_motion_model(𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1):

2.

3.

4.

5.

6.

7.

8. 𝑥𝑥′ = 𝑥𝑥 + 𝛿̂𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 cos 𝜃𝜃 + 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟

9. 𝑦𝑦′ = 𝑦𝑦 + 𝛿̂𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 sin 𝜃𝜃 + 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟
10. 𝜃𝜃′ = 𝜃𝜃 + 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿̂𝛿𝑟𝑟𝑟𝑟𝑟𝑟2
11. return 𝑥𝑥𝑥 𝑦𝑦𝑦 𝜃𝜃′ 𝑇𝑇

θδ −−−= )','(atan21 xxyyrot
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Sampling from Our Motion Model

Start



Odometry Motion Model
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 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 

),|( 1−ttt xuxp
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Odometry Motion Model
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 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 
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Odometry Motion Model
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 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 
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Odometry Motion Model
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 the control vector is made up of the robot odometry

 use the robot’s internal pose estimates to compute the δ
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Odometry Motion Model
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 use the given poses to compute the δ

 as with the velocity motion model, we have to solve the 
inverse kinematics problem here
 but the problem is much simpler than in the velocity motion model

22 )'()'(ˆ yyxxtrans −+−=δ

θδ −−−= )','(atan2ˆ
1 xxyyrot

12
ˆ'ˆ
rotrot δθθδ −−=



Odometry Motion Model
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 recall the noise model

which makes it easy to compute the probability densities of 
observing the differences in the δ
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Odometry Motion Model

22 )'()'( yyxxtrans −+−=δ
θδ −−−= )','(atan21 xxyyrot

12 ' rotrot δθθδ −−=
22 )'()'(ˆ yyxxtrans −+−=δ
θδ −−−= )','(atan2ˆ

1 xxyyrot

12
ˆ'ˆ
rotrot δθθδ −−=

)ˆˆ,ˆ(prob 2
trans2

2
rot111rot1rot1 δαδαδδ +−=p

))ˆˆ(ˆ,ˆ(prob 2
rot2

2
rot14

2
trans3transtrans2 δδαδαδδ ++−=p

)ˆˆ,ˆ(prob 2
trans2

2
rot212rot2rot3 δαδαδδ +−=p

1. Algorithm motion_model_odometry(x,x’,u)

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. return  p1 · p2 · p3

odometry values (u)

values of interest (x,x’)
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Recap
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 velocity motion model
 control variables were linear velocity, angular velocity about ICC, 

and final angular velocity about robot center
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Recap
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 odometric motion model
 control variables were derived from odometry

 initial rotation, translation, final rotation
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Recap
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 for both models we assumed the control inputs ut were noisy
 the noise models were assumed to be zero-mean additive 

with a specified variance









+







=









noise

noise

ˆ
ˆ

ωωω
vvv

actual
velocity

commanded
velocity

noise

2
4

2
3noise

2
2

2
1noise

)var(
)var(

ωααω

ωαα

+=

+=

v
vv



Recap
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 for both models we assumed the control inputs ut were noisy
 the noise models were assumed to be zero-mean additive 

with a specified variance
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Recap
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 for both models we studied how to derive
 given

 xt-1 current pose  
 ut control input
 xt new pose

find the probability density that the new pose is generated by the 
current pose and control input

 required inverting the motion model to compare the actual
with the commanded control parameters

),|( 1−ttt xuxp



Recap

3/14/201842

 for both models we studied how to sample from 
 given

 xt-1 current pose  
 ut control input

generate a random new pose xt consistent with the motion model

 sampling from                       is often easier than calculating
directly because only the forward kinematics 

are required

),|( 1−ttt xuxp
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